- Boxes
- definitions
- Ellipses
- theorems and lemmas
- Blue border
- the statement of this result is ready to be formalized; all prerequisites are done
- Orange border
- the statement of this result is not ready to be formalized; the blueprint needs more work
- Blue background
- the proof of this result is ready to be formalized; all prerequisites are done
- Green border
- the statement of this result is formalized
- Green background
- the proof of this result is formalized
- Dark green background
- the proof of this result and all its ancestors are formalized
- Dark green border
- this is in Mathlib
Let \(\alpha \) be a type and let \(p : \alpha \to \alpha \to \mathrm{Prop}\) be a preorder. For \(x,y : \alpha \) we define \(\mathrm{EquivOfLE}\, p\, x\, y\) to hold when both \(p\, x\, y\) and \(p\, y\, x\) hold. In other words, \(\mathrm{EquivOfLE}\, p\) is the symmetric closure of the relation \(p\).
Let \(M\) be a monoid and let \(x,y\in M\). We define \(x \le _{\mathcal H} y\) if both \(x \le _{\mathcal R} y\) and \(x \le _{\mathcal L} y\) hold, that is, \(x\) is simultaneously in the right and left ideals generated by \(y\). Unwinding the definition, this means there exist elements \(z_1,z_2\in M\) with \(x = y\cdot z_1\) and \(x = z_2\cdot y\).
Let \(M\) be a monoid. For \(x,y \in M\) we define \(x \, \mathcal R\, y\) to hold if both \(x \le _{\mathcal R} y\) and \(y \le _{\mathcal R} x\) hold. In other words, two elements are right equivalent when they lie in the principal right ideals generated by each other.
Let \(M\) be a monoid and \(x,y,z\in M\).
\(\mathbf{(J\text{-}L)}\) If \(x \le _{\mathcal J} y\cdot z\), then \(x \le _{\mathcal J} z\).
\(\mathbf{(J\text{-}R)}\) If \(x \le _{\mathcal J} y\cdot z\), then \(x \le _{\mathcal J} y\).
\(\mathbf{(R\text{-}R)}\) If \(x \le _{\mathcal R} y\cdot z\), then \(x \le _{\mathcal R} y\).
\(\mathbf{(L\text{-}L)}\) If \(x \le _{\mathcal L} y\cdot z\), then \(x \le _{\mathcal L} z\).
Let \(x,y,z\in M\).
If \(x \, \mathcal D\, y\) and \(y \, \mathcal L\, z\), then \(x \, \mathcal D\, z\).
If \(x \, \mathcal D\, y\) and \(y \, \mathcal R\, z\), then \(x \, \mathcal D\, z\). (by duality from the previous bullet, using symmetry)
For all \(x,y\in M\),
and in particular \(x \, \mathcal D\, y \Rightarrow y \, \mathcal D\, x\).
Let \(M\) be a monoid and let \(x,y\in M\) with \(x \, \mathcal R\, y\). Fix \(u,v\in M\) such that \(x\cdot u = y\) and \(y\cdot v = x\). Then the right-translation
restricts to a bijection from the \(\mathcal L\)-class of \(x\) onto the \(\mathcal L\)-class of \(y\); moreover, \(\rho _v(z):=z\cdot v\) is the inverse bijection. Additionally, these translations preserve \(\mathcal H\)-equivalence.
The relation \(\le _{\mathcal H}\) on \(M\) is a preorder; in particular:
Reflexivity. For every \(x\in M\), \(x \le _{\mathcal H} x\) since \(x \le _{\mathcal R} x\) and \(x \le _{\mathcal L} x\).
Transitivity. If \(x \le _{\mathcal H} y\) and \(y \le _{\mathcal H} z\), then \(x \le _{\mathcal R} y \le _{\mathcal R} z\) and \(x \le _{\mathcal L} y \le _{\mathcal L} z\); hence \(x \le _{\mathcal R} z\) and \(x \le _{\mathcal L} z\), so \(x \le _{\mathcal H} z\).
Let \(M\) be a monoid and suppose \(x,y\in M\) satisfy \(x \, \mathcal R\, y\). Choose \(u,v\in M\) with \(x\cdot u = y\) and \(y\cdot v = x\). Then for every \(z\in M\) with \(z \le _{\mathcal L} x\), the map
acts as the identity on \(z\), i.e. \(\rho _{u,v}(z) = z\). A left–right dual statement holds with left-translations and \(\mathcal R\)-below elements.
The relation \(\le _{\mathcal J}\) on \(M\) is a preorder; in particular:
Reflexivity. For every \(x\in M\), \(x \le _{\mathcal J} x\) (witness \(u=v=1\) so \(x=1\cdot x\cdot 1\)).
Transitivity. If \(x \le _{\mathcal J} y\) and \(y \le _{\mathcal J} z\), pick \(u_1,v_1,u_2,v_2\in M\) with \(x = u_1 y v_1\) and \(y = u_2 z v_2\); then \(x = u_1 (u_2 z v_2) v_1 = (u_1 u_2) z (v_2 v_1)\), so \(x \le _{\mathcal J} z\).
For all \(x,y,z\in M\):
(Preorder) If \(x \le _{\mathcal R} y\), then \(z\cdot x \le _{\mathcal R} z\cdot y\).
(Equivalence) If \(x \, \mathcal R\, y\), then \(z\cdot x \, \mathcal R\, z\cdot y\).
The relation \(\le _{\mathcal L}\) on \(M\) is a preorder; in particular:
Reflexivity. For every \(x\in M\), \(x \le _{\mathcal L} x\) (witness \(z=1\) since \(1\cdot x = x\)).
Transitivity. If \(x \le _{\mathcal L} y\) and \(y \le _{\mathcal L} z\), pick witnesses \(u,v\in M\) with \(x = u y\) and \(y = v z\); then \(x = (uv) z\), so \(x \le _{\mathcal L} z\).
For all \(M\) a monoid and \(x,y,u,v\in M\), the following hold:
\(\mathbf{(R)}\) \(x\cdot y \le _{\mathcal R} x\).
\(\mathbf{(L)}\) \(y\cdot x \le _{\mathcal L} x\).
\(\mathbf{(J)}\) \(u\cdot x\cdot v \le _{\mathcal J} x\).
For all \(x,y,z\in M\):
(Preorder) If \(x \le _{\mathcal L} y\), then \(x\cdot z \le _{\mathcal L} y\cdot z\).
(Equivalence) If \(x \, \mathcal L\, y\), then \(x\cdot z \, \mathcal L\, y\cdot z\).
For any \(x,y \in M\), there exists an element \(z\) with \(x \le _{\mathcal L} z\) and \(z \le _{\mathcal R} y\) if and only if there exists an element \(w\) with \(x \le _{\mathcal R} w\) and \(w \le _{\mathcal L} y\).
Let \(M\) be a monoid and let \(e\in M\) be idempotent \((e\cdot e = e)\). For any \(x\in M\),
The relation \(\le _{\mathcal R}\) on \(M\) is a preorder; in particular:
Reflexivity. For every \(x\in M\), \(x \le _{\mathcal R} x\) (witness \(z=1\) since \(x = x\cdot 1\)).
Transitivity. If \(x \le _{\mathcal R} y\) and \(y \le _{\mathcal R} z\), pick witnesses \(v,u\in M\) with \(x = yv\) and \(y = zu\); then \(x = z(uv)\), so \(x \le _{\mathcal R} z\).
For any \(x,y\in M\), the following are equivalent: