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Chapter 1

Idempotent Elements in Finite
Semigroups

Lemma 1 (Existence of Idempotent Powers). In a finite semigroup, for any element x, there
exists a positive integer m such that x™ is an idempotent. This idempotent power is unique.
The existence is a consequence of the fact that in a finite semigroup, the sequence of powers of
an element x, 22,23, ... must eventually repeat. From a repeating sequence, an idempotent can

be constructed.

Proof. Since the semigroup S is finite, for any = € S, the set of its powers {z!, 22 23, ... } must
also be finite. By the pigeonhole principle, there must exist distinct positive integers m,n such
that 2™ = z”. Let’s assume m < n. Then we can write 2™ = x™z™ ™. This shows that powers
of = eventually enter a cycle. From this cyclic part, we can extract a power k such that z* is
idempotent. The proof of uniqueness follows by showing that if 2* and z® are both idempotents,
then z¢ = zb. O

Lemma 2 (Sandwich Property in Finite Monoids). In a finite monoid M, if an element a
satisfies the property a = xay for some x,y € M, then there exist non-zero powers of x and y,
say ny and ny, such that x™a = a and ay™ = a.

Proof. From a = xay, we can repeatedly substitute a into itself to get a = x*ay® for any k > 1.
Since M is a finite monoid, there exists a non-zero power n; such that 2™ is an idempotent (by
1). Then we have a = ™ ay™ . Multiplying by 2™ on the left gives 2™"1a = ?"1ay™ . Since 2™
is idempotent, 2™ = 2™, so 2™a = 2™ ay™ = a. A symmetric argument shows that ay™ = a
for some idempotent power y™2. O



Chapter 2

Green’s Relations

Definition 3 (Green’s Preorder and Equivalence Relations). In a semigroup S, Green’s relations
are a set of five equivalence relations that characterize the elements of .S in terms of the principal
ideals they generate. These relations are fundamental to the study of semigroups.

First, we define four preorder relations: <, <., <z, and <4 Let St be the monoid
obtained by adjoining an identity element to S if it does not already have one. For any two
elements z,y € S:

o x <, y if and only if the principal right ideal generated by x is a subset of the principal
right ideal generated by y (xS' C yS!). In Lean, we use the equivalent definition that
there must exist some z € S' such that = = yz.

e = <, y if and only if the principal left ideal generated by x is a subset of the principal
left ideal generated by y (S'x C S'y). In Lean, we use the equivalent definition that there
must exist some z € S! such that x = zy.

e x <; y if and only if the principal two-sided ideal generated by x is a subset of the principal
two-sided ideal generated by y (S1zSt C S1yS!). In Lean, we use the equivalent definition
that there must exist some u,v € S! such that = uyw.

e x <y yifand only if x <, yand z <, y.

These four relations are preorders (they are reflexive and transitive).

From these preorders, we define the equivalence relations X, £, J, and F as the symmetric
closures of their corresponding preorders. For example, xRy if and only if x <, y and y <, z.
The equivalence classes are denoted by [z], [z] ., etc.

Finally, the 2 relation is defined by composing R and £: xDy if there exists an element
z € S such that Xz and zLy. It can be shown that 2 is an equivalence relation and that it can
also be defined by composing £ and X.

Lemma 4 (Multiplication Compatibility of Green’s Relations). The & and £ relations exhibit
compatibility with semigroup multiplication on one side. Specifically, the R-preorder is compatible
with left multiplication, and the L-preorder is compatible with right multiplication. If v <4 vy,
then for any z € S, we have zx <4 zy. This property extends to the equivalence relation R. If
xRy, then zxRzy. A similar argument holds for the L-preorder and £-equivalence, which are
compatible with right multiplication. If x < .y, then xz <, yz for any z € S.



Proof. Let x,y,z € S. To prove left compatibility for <, assume x <, y. By definition, there
exists a € S! such that z = ya. Multiplying by z on the left gives zz = z(ya) = (2y)a. This
implies zx <j zy. For the equivalence Ry, we have both z <, y and y <, z. Applying the
result for preorders, we get zx <, zy and zy <, zx, which means zzXzy. The proof for <, and
£ with right multiplication is analogous. O

Lemma 5 (Commutation of R and L Relations). The composition of the relations R and £ is
commutative. That is, for any x,y € S, there exists a z such that xRz and zLy if and only if
there exists a w such that zLw and wRy. This can be written as Ko L = Lo R. This property
is crucial for proving that the relation D = R o £ is symmetric, and therefore an equivalence
relation.

Proof. Suppose there exists z with Xz and zLy. From xXz, we have x = za and z = xb for
some a,b € S'. From zLy, we have z = cy and y = dz for some ¢,d € S'. We need to find
an element w such that z£w and wRy. The Lean proof shows that in the non-trivial case, the
element dza can be used for w. This commutation is essential for establishing that 2 is an
equivalence relation, as it directly implies symmetry. O

Lemma 6 (Closure of D under R and L). The D relation is closed under composition with R
and £. If xDy and yLz, then xDz. Similarly, if Dy and yRz, then xDz. This property is
used to prove the transitivity of D.

Proof. Suppose xDy and yLz. By definition of D, there exists an element w such that zXw and
wLy. Since £ is an equivalence relation, from wLy and y<£z, we can deduce w<Lz. Now we have
xRw and wLz, which by definition means x2Dz. A similar argument holds for closure under X.
If Dy and yRz, we use the commutation of R and £ (5). 2Dy means there is a w with xLw
and wRy. Since X is an equivalence relation, wRy and yRz implies wRz. So we have xLw and
wRz, which means xDz. O



Chapter 3

Basic Properties of Green’s
Relations

Lemma 7 (Characterization of Elements Below Idempotents). Let e be an idempotent element
in a semigroup S. An element x € S is R-below e if and only if x = ex. Similarly, x is £-below
e if and only if x = xe. It follows that x is JH -below e if and only if both conditions hold, i.e.,
x =ex and x = xe.

Proof. For the R-preorder, if z <, e, then x = ez for some z € S!. Since e is idempotent, e = €2,

so ex = e(ez) = €2z = ez = x. Conversely, if x = ex, then x < e by definition. The argument
for the £-preorder is analogous. The statement for F follows directly from the definitions. [

Lemma 8 (Preservation of Green’s Relations by Morphisms). Green’s relations are preserved
under semigroup morphisms. Let f: S — T be a semigroup morphism. If two elements xz,y € S
are related by any of Green’s preorders or equivalence relations, then their images f(x), f(y) are
related by the same relation in T.

Proof. If z <4 vy, then & = yz for some z € S'. Applying the morphism f gives f(z) = f(yz) =
fW)f(2), so f(z) <z f(y). This extends to the equivalence relation: if xRy, then x <, y and
y <z x, which implies f(z) <z f(y) and f(y) <z f(z), so f(z)Rf(y).

A similar argument holds for £. The preservation of J and H follows from their definitions.
For D, if Dy, there exists z such that xRz and zLy. Then f(x)Rf(z) and f(2)Lf(y), which
implies f(z)Df(y). O



Chapter 4

Green’s Relations in Finite
Semigroups

Lemma 9 (Equivalence of D and J Relations in Finite Semigroups). In a finite semigroup, the
D and g relations are equivalent. That is, for any two elements x,y € S, Dy if and only if

xJy.

Proof. The forward direction, that 2y implies 7y, holds in any semigroup, not just finite ones.
This is because if 2Dy, there exists z such that xRz and zLy. These relations imply x <, z and
z <4y, and by transitivity, z <; y. A symmetric argument shows y <, x, so zJy.

The reverse direction relies on the semigroup being finite. If 27y, then x <; y and y <; .
This means there exist s,t,u,v € S* such that z = syt and y = uzv. Substituting these into
each other shows that z is of the form axb for some a,b € S. In a finite semigroup, this implies
that some power of a and b will lead to an idempotent element related to x, which can be used
to construct the intermediate element for the 2 relation. This relies on the property that for
any element a in a finite semigroup, the sequence a, a2, a?, ... must contain an idempotent. [
Lemma 10 (J-Equivalence Strengthening Preorders). In a finite semigroup, if two elements
are J-equivalent, then a one-sided preorder implies the corresponding one-sided equivalence.
Specifically, if xJy and v <5y, then xRy. Similarly, if xJy and x <, y, then zLy.

Proof. Suppose xJy and x <, y. Since we are in a finite semigroup, zJy implies Dy by 9. So
there exists a z such that xRz and z<Ly. From x <4 y, we can show that y <, x, which gives
xRy. The argument for £ is analogous. O

Lemma 11 (H-Equivalence from Sandwiching). In a finite semigroup, if an element x can be
written as © = uzv for some u,v € S, then x is H -equivalent to both ux and xv.

Proof. The condition = wwv implies z <; ur and z <z xv. It also implies ur <z z and
xv <, z. Using the property that J-equivalence strengthens preorders to equivalences in finite
semigroups (10), we can establish the & and £ equivalences needed to show xH ux and xH zv.

O
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