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Chapter 1

Idempotent Elements in Finite
Semigroups

Lemma 1 (Existence of Idempotent Powers). In a finite semigroup, for any element 𝑥, there
exists a positive integer 𝑚 such that 𝑥𝑚 is an idempotent. This idempotent power is unique.
The existence is a consequence of the fact that in a finite semigroup, the sequence of powers of
an element 𝑥, 𝑥2, 𝑥3, … must eventually repeat. From a repeating sequence, an idempotent can
be constructed.

Proof. Since the semigroup 𝑆 is finite, for any 𝑥 ∈ 𝑆, the set of its powers {𝑥1, 𝑥2, 𝑥3, … } must
also be finite. By the pigeonhole principle, there must exist distinct positive integers 𝑚, 𝑛 such
that 𝑥𝑚 = 𝑥𝑛. Let’s assume 𝑚 < 𝑛. Then we can write 𝑥𝑚 = 𝑥𝑚𝑥𝑛−𝑚. This shows that powers
of 𝑥 eventually enter a cycle. From this cyclic part, we can extract a power 𝑘 such that 𝑥𝑘 is
idempotent. The proof of uniqueness follows by showing that if 𝑥𝑎 and 𝑥𝑏 are both idempotents,
then 𝑥𝑎 = 𝑥𝑏.

Lemma 2 (Sandwich Property in Finite Monoids). In a finite monoid 𝑀 , if an element 𝑎
satisfies the property 𝑎 = 𝑥𝑎𝑦 for some 𝑥, 𝑦 ∈ 𝑀 , then there exist non-zero powers of 𝑥 and 𝑦,
say 𝑛1 and 𝑛2, such that 𝑥𝑛1𝑎 = 𝑎 and 𝑎𝑦𝑛2 = 𝑎.

Proof. From 𝑎 = 𝑥𝑎𝑦, we can repeatedly substitute 𝑎 into itself to get 𝑎 = 𝑥𝑘𝑎𝑦𝑘 for any 𝑘 ≥ 1.
Since 𝑀 is a finite monoid, there exists a non-zero power 𝑛1 such that 𝑥𝑛1 is an idempotent (by
1). Then we have 𝑎 = 𝑥𝑛1𝑎𝑦𝑛1 . Multiplying by 𝑥𝑛1 on the left gives 𝑥𝑛1𝑎 = 𝑥2𝑛1𝑎𝑦𝑛1 . Since 𝑥𝑛1

is idempotent, 𝑥2𝑛1 = 𝑥𝑛1 , so 𝑥𝑛1𝑎 = 𝑥𝑛1𝑎𝑦𝑛1 = 𝑎. A symmetric argument shows that 𝑎𝑦𝑛2 = 𝑎
for some idempotent power 𝑦𝑛2 .
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Chapter 2

Green’s Relations

Definition 3 (Green’s Preorder and Equivalence Relations). In a semigroup 𝑆, Green’s relations
are a set of five equivalence relations that characterize the elements of 𝑆 in terms of the principal
ideals they generate. These relations are fundamental to the study of semigroups.

First, we define four preorder relations: ≤ℛ, ≤ℒ, ≤𝒥, and ≤ℋ. Let 𝑆1 be the monoid
obtained by adjoining an identity element to 𝑆 if it does not already have one. For any two
elements 𝑥, 𝑦 ∈ 𝑆:

• 𝑥 ≤ℛ 𝑦 if and only if the principal right ideal generated by 𝑥 is a subset of the principal
right ideal generated by 𝑦 (𝑥𝑆1 ⊆ 𝑦𝑆1). In Lean, we use the equivalent definition that
there must exist some 𝑧 ∈ 𝑆1 such that 𝑥 = 𝑦𝑧.

• 𝑥 ≤ℒ 𝑦 if and only if the principal left ideal generated by 𝑥 is a subset of the principal
left ideal generated by 𝑦 (𝑆1𝑥 ⊆ 𝑆1𝑦). In Lean, we use the equivalent definition that there
must exist some 𝑧 ∈ 𝑆1 such that 𝑥 = 𝑧𝑦.

• 𝑥 ≤𝒥 𝑦 if and only if the principal two-sided ideal generated by 𝑥 is a subset of the principal
two-sided ideal generated by 𝑦 (𝑆1𝑥𝑆1 ⊆ 𝑆1𝑦𝑆1). In Lean, we use the equivalent definition
that there must exist some 𝑢, 𝑣 ∈ 𝑆1 such that 𝑥 = 𝑢𝑦𝑣.

• 𝑥 ≤ℋ 𝑦 if and only if 𝑥 ≤ℛ 𝑦 and 𝑥 ≤ℒ 𝑦.

These four relations are preorders (they are reflexive and transitive).
From these preorders, we define the equivalence relations ℛ, ℒ, 𝒥, and ℋ as the symmetric

closures of their corresponding preorders. For example, 𝑥ℛ𝑦 if and only if 𝑥 ≤ℛ 𝑦 and 𝑦 ≤ℛ 𝑥.
The equivalence classes are denoted by [𝑥]ℛ, [𝑥]ℒ, etc.

Finally, the 𝒟 relation is defined by composing ℛ and ℒ: 𝑥𝒟𝑦 if there exists an element
𝑧 ∈ 𝑆 such that 𝑥ℛ𝑧 and 𝑧ℒ𝑦. It can be shown that 𝒟 is an equivalence relation and that it can
also be defined by composing ℒ and ℛ.

Lemma 4 (Multiplication Compatibility of Green’s Relations). The ℛ and ℒ relations exhibit
compatibility with semigroup multiplication on one side. Specifically, the ℛ-preorder is compatible
with left multiplication, and the ℒ-preorder is compatible with right multiplication. If 𝑥 ≤ℛ 𝑦,
then for any 𝑧 ∈ 𝑆, we have 𝑧𝑥 ≤ℛ 𝑧𝑦. This property extends to the equivalence relation ℛ. If
𝑥ℛ𝑦, then 𝑧𝑥ℛ𝑧𝑦. A similar argument holds for the ℒ-preorder and ℒ-equivalence, which are
compatible with right multiplication. If 𝑥 ≤ℒ 𝑦, then 𝑥𝑧 ≤ℒ 𝑦𝑧 for any 𝑧 ∈ 𝑆.
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Proof. Let 𝑥, 𝑦, 𝑧 ∈ 𝑆. To prove left compatibility for ≤ℛ, assume 𝑥 ≤ℛ 𝑦. By definition, there
exists 𝑎 ∈ 𝑆1 such that 𝑥 = 𝑦𝑎. Multiplying by 𝑧 on the left gives 𝑧𝑥 = 𝑧(𝑦𝑎) = (𝑧𝑦)𝑎. This
implies 𝑧𝑥 ≤ℛ 𝑧𝑦. For the equivalence 𝑥ℛ𝑦, we have both 𝑥 ≤ℛ 𝑦 and 𝑦 ≤ℛ 𝑥. Applying the
result for preorders, we get 𝑧𝑥 ≤ℛ 𝑧𝑦 and 𝑧𝑦 ≤ℛ 𝑧𝑥, which means 𝑧𝑥ℛ𝑧𝑦. The proof for ≤ℒ and
ℒ with right multiplication is analogous.

Lemma 5 (Commutation of R and L Relations). The composition of the relations ℛ and ℒ is
commutative. That is, for any 𝑥, 𝑦 ∈ 𝑆, there exists a 𝑧 such that 𝑥ℛ𝑧 and 𝑧ℒ𝑦 if and only if
there exists a 𝑤 such that 𝑥ℒ𝑤 and 𝑤ℛ𝑦. This can be written as ℛ ∘ ℒ = ℒ ∘ ℛ. This property
is crucial for proving that the relation 𝒟 = ℛ ∘ ℒ is symmetric, and therefore an equivalence
relation.

Proof. Suppose there exists 𝑧 with 𝑥ℛ𝑧 and 𝑧ℒ𝑦. From 𝑥ℛ𝑧, we have 𝑥 = 𝑧𝑎 and 𝑧 = 𝑥𝑏 for
some 𝑎, 𝑏 ∈ 𝑆1. From 𝑧ℒ𝑦, we have 𝑧 = 𝑐𝑦 and 𝑦 = 𝑑𝑧 for some 𝑐, 𝑑 ∈ 𝑆1. We need to find
an element 𝑤 such that 𝑥ℒ𝑤 and 𝑤ℛ𝑦. The Lean proof shows that in the non-trivial case, the
element 𝑑𝑧𝑎 can be used for 𝑤. This commutation is essential for establishing that 𝒟 is an
equivalence relation, as it directly implies symmetry.

Lemma 6 (Closure of D under R and L). The 𝒟 relation is closed under composition with ℛ
and ℒ. If 𝑥𝒟𝑦 and 𝑦ℒ𝑧, then 𝑥𝒟𝑧. Similarly, if 𝑥𝒟𝑦 and 𝑦ℛ𝑧, then 𝑥𝒟𝑧. This property is
used to prove the transitivity of 𝒟.

Proof. Suppose 𝑥𝒟𝑦 and 𝑦ℒ𝑧. By definition of 𝒟, there exists an element 𝑤 such that 𝑥ℛ𝑤 and
𝑤ℒ𝑦. Since ℒ is an equivalence relation, from 𝑤ℒ𝑦 and 𝑦ℒ𝑧, we can deduce 𝑤ℒ𝑧. Now we have
𝑥ℛ𝑤 and 𝑤ℒ𝑧, which by definition means 𝑥𝒟𝑧. A similar argument holds for closure under ℛ.
If 𝑥𝒟𝑦 and 𝑦ℛ𝑧, we use the commutation of ℛ and ℒ (5). 𝑥𝒟𝑦 means there is a 𝑤 with 𝑥ℒ𝑤
and 𝑤ℛ𝑦. Since ℛ is an equivalence relation, 𝑤ℛ𝑦 and 𝑦ℛ𝑧 implies 𝑤ℛ𝑧. So we have 𝑥ℒ𝑤 and
𝑤ℛ𝑧, which means 𝑥𝒟𝑧.
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Chapter 3

Basic Properties of Green’s
Relations

Lemma 7 (Characterization of Elements Below Idempotents). Let 𝑒 be an idempotent element
in a semigroup 𝑆. An element 𝑥 ∈ 𝑆 is ℛ-below 𝑒 if and only if 𝑥 = 𝑒𝑥. Similarly, 𝑥 is ℒ-below
𝑒 if and only if 𝑥 = 𝑥𝑒. It follows that 𝑥 is ℋ-below 𝑒 if and only if both conditions hold, i.e.,
𝑥 = 𝑒𝑥 and 𝑥 = 𝑥𝑒.

Proof. For the ℛ-preorder, if 𝑥 ≤ℛ 𝑒, then 𝑥 = 𝑒𝑧 for some 𝑧 ∈ 𝑆1. Since 𝑒 is idempotent, 𝑒 = 𝑒2,
so 𝑒𝑥 = 𝑒(𝑒𝑧) = 𝑒2𝑧 = 𝑒𝑧 = 𝑥. Conversely, if 𝑥 = 𝑒𝑥, then 𝑥 ≤ℛ 𝑒 by definition. The argument
for the ℒ-preorder is analogous. The statement for ℋ follows directly from the definitions.

Lemma 8 (Preservation of Green’s Relations by Morphisms). Green’s relations are preserved
under semigroup morphisms. Let 𝑓 ∶ 𝑆 → 𝑇 be a semigroup morphism. If two elements 𝑥, 𝑦 ∈ 𝑆
are related by any of Green’s preorders or equivalence relations, then their images 𝑓(𝑥), 𝑓(𝑦) are
related by the same relation in 𝑇 .

Proof. If 𝑥 ≤ℛ 𝑦, then 𝑥 = 𝑦𝑧 for some 𝑧 ∈ 𝑆1. Applying the morphism 𝑓 gives 𝑓(𝑥) = 𝑓(𝑦𝑧) =
𝑓(𝑦)𝑓(𝑧), so 𝑓(𝑥) ≤ℛ 𝑓(𝑦). This extends to the equivalence relation: if 𝑥ℛ𝑦, then 𝑥 ≤ℛ 𝑦 and
𝑦 ≤ℛ 𝑥, which implies 𝑓(𝑥) ≤ℛ 𝑓(𝑦) and 𝑓(𝑦) ≤ℛ 𝑓(𝑥), so 𝑓(𝑥)ℛ𝑓(𝑦).

A similar argument holds for ℒ. The preservation of 𝒥 and ℋ follows from their definitions.
For 𝒟, if 𝑥𝒟𝑦, there exists 𝑧 such that 𝑥ℛ𝑧 and 𝑧ℒ𝑦. Then 𝑓(𝑥)ℛ𝑓(𝑧) and 𝑓(𝑧)ℒ𝑓(𝑦), which
implies 𝑓(𝑥)𝒟𝑓(𝑦).
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Chapter 4

Green’s Relations in Finite
Semigroups

Lemma 9 (Equivalence of D and J Relations in Finite Semigroups). In a finite semigroup, the
𝒟 and 𝒥 relations are equivalent. That is, for any two elements 𝑥, 𝑦 ∈ 𝑆, 𝑥𝒟𝑦 if and only if
𝑥𝒥𝑦.

Proof. The forward direction, that 𝑥𝒟𝑦 implies 𝑥𝒥𝑦, holds in any semigroup, not just finite ones.
This is because if 𝑥𝒟𝑦, there exists 𝑧 such that 𝑥ℛ𝑧 and 𝑧ℒ𝑦. These relations imply 𝑥 ≤𝒥 𝑧 and
𝑧 ≤𝒥 𝑦, and by transitivity, 𝑥 ≤𝒥 𝑦. A symmetric argument shows 𝑦 ≤𝒥 𝑥, so 𝑥𝒥𝑦.

The reverse direction relies on the semigroup being finite. If 𝑥𝒥𝑦, then 𝑥 ≤𝒥 𝑦 and 𝑦 ≤𝒥 𝑥.
This means there exist 𝑠, 𝑡, 𝑢, 𝑣 ∈ 𝑆1 such that 𝑥 = 𝑠𝑦𝑡 and 𝑦 = 𝑢𝑥𝑣. Substituting these into
each other shows that 𝑥 is of the form 𝑎𝑥𝑏 for some 𝑎, 𝑏 ∈ 𝑆. In a finite semigroup, this implies
that some power of 𝑎 and 𝑏 will lead to an idempotent element related to 𝑥, which can be used
to construct the intermediate element for the 𝒟 relation. This relies on the property that for
any element 𝑎 in a finite semigroup, the sequence 𝑎, 𝑎2, 𝑎3, … must contain an idempotent.

Lemma 10 (J-Equivalence Strengthening Preorders). In a finite semigroup, if two elements
are 𝒥-equivalent, then a one-sided preorder implies the corresponding one-sided equivalence.
Specifically, if 𝑥𝒥𝑦 and 𝑥 ≤ℛ 𝑦, then 𝑥ℛ𝑦. Similarly, if 𝑥𝒥𝑦 and 𝑥 ≤ℒ 𝑦, then 𝑥ℒ𝑦.

Proof. Suppose 𝑥𝒥𝑦 and 𝑥 ≤ℛ 𝑦. Since we are in a finite semigroup, 𝑥𝒥𝑦 implies 𝑥𝒟𝑦 by 9. So
there exists a 𝑧 such that 𝑥ℛ𝑧 and 𝑧ℒ𝑦. From 𝑥 ≤ℛ 𝑦, we can show that 𝑦 ≤ℛ 𝑥, which gives
𝑥ℛ𝑦. The argument for ℒ is analogous.

Lemma 11 (H-Equivalence from Sandwiching). In a finite semigroup, if an element 𝑥 can be
written as 𝑥 = 𝑢𝑥𝑣 for some 𝑢, 𝑣 ∈ 𝑆, then 𝑥 is ℋ-equivalent to both 𝑢𝑥 and 𝑥𝑣.

Proof. The condition 𝑥 = 𝑢𝑥𝑣 implies 𝑥 ≤𝒥 𝑢𝑥 and 𝑥 ≤𝒥 𝑥𝑣. It also implies 𝑢𝑥 ≤ℛ 𝑥 and
𝑥𝑣 ≤ℒ 𝑥. Using the property that 𝒥-equivalence strengthens preorders to equivalences in finite
semigroups (10), we can establish the ℛ and ℒ equivalences needed to show 𝑥ℋ𝑢𝑥 and 𝑥ℋ𝑥𝑣.
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