Basic Properties of Green's Relations #
This file proves basic properties about Green's relations and idempotent elements.
We also prove that Green's relations are preserved under morphisms.
Main theorems #
Characterizations of elements that are ðĄ-below, ð-below, or ð-below an idempotent:
Semigroup.RPreorder.le_idempotent-x âĪðĄ e â x = e * x.Semigroup.LPreorder.le_idempotent-x âĪð e â x = x * e.Semigroup.HPreorder.le_idempotent-x âĪð e â x = e * x â§ x = x * e.
Green's relations are preserved under semigroup morphisms f:
Semigroup.RPreorder.hom_pres-x âĪðĄ y â f x âĪðĄ f y.Semigroup.LPreorder.hom_pres-x âĪð y â f x âĪð f y.Semigroup.JPreorder.hom_pres-x âĪð y â f x âĪð f y.Semigroup.HPreorder.hom_pres-x âĪð y â f x âĪð f y.Semigroup.REquiv.hom_pres-x ðĄ y â f x ðĄ f y.Semigroup.LEquiv.hom_pres-x ð y â f x ð f y.Semigroup.JEquiv.hom_pres-x ð y â f x ð f y.Semigroup.HEquiv.hom_pres-x ð y â f x ð f y.Semigroup.DEquiv.hom_pres-x ð y â f x ð f y.
References #
TODO
Blueprint #
- One entry for the characterization lemmas of elements below idempotents. Label : le-idempotent Tagged Lean lemmas :
Semigroup.RPreorder.le_idempotentSemigroup.LPreorder.le_idempotentSemigroup.HPreorder.le_idempotentContent : prove it for R and H, say L holds by a similar argument to R Dependencies : greens-relations
- One entry for the morphism preservation lemmas. Label : greens-relations-hom-pres Tagged Lean lemmas :
Semigroup.RPreorder.hom_presSemigroup.LPreorder.hom_presSemigroup.JPreorder.hom_presSemigroup.HPreorder.hom_presSemigroup.REquiv.hom_presSemigroup.LEquiv.hom_presSemigroup.JEquiv.hom_presSemigroup.HEquiv.hom_presSemigroup.DEquiv.hom_presContent : prove âĪR and ðĄ, say âĪL and ð holds by a similar argument. Then, prove âĪð and ð, then âĪð and ð, then ð. Dependencies : greens-relations
Idempotent properties (Prop 1.4.1) #
theorem
Semigroup.RPreorder.le_idempotent
{S : Type u_1}
[Semigroup S]
(x e : S)
(h : IsIdempotentElem e)
:
An element x is ðĄ-below an idempotent e if and only if x = e * x.
theorem
Semigroup.LPreorder.le_idempotent
{S : Type u_1}
[Semigroup S]
(x e : S)
(h : IsIdempotentElem e)
:
An element x is ð-below an idempotent e if and only if x = x * e.
theorem
Semigroup.HPreorder.le_idempotent'
{S : Type u_1}
[Semigroup S]
(x e : S)
(he : IsIdempotentElem e)
:
An element is ð-below an idempotent if and only if it is a sandwich fixed point.
Morphisms #
We prove that all of Green's preorders and equivalences are preserved under morphisms.
Note that these should quantify over MulHomClass.