Documentation

MyProject.Green.Basic

Basic Properties of Green's Relations #

This file proves basic properties about Green's relations and idempotent elements.

We also prove that Green's relations are preserved under morphisms.

Main theorems #

Characterizations of elements that are ð“Ą-below, 𝓛-below, or 𝓗-below an idempotent:

Green's relations are preserved under semigroup morphisms f:

References #

TODO

Blueprint #

Idempotent properties (Prop 1.4.1) #

theorem Semigroup.RPreorder.le_idempotent {S : Type u_1} [Semigroup S] (x e : S) (h : IsIdempotentElem e) :

An element x is ð“Ą-below an idempotent e if and only if x = e * x.

theorem Semigroup.LPreorder.le_idempotent {S : Type u_1} [Semigroup S] (x e : S) (h : IsIdempotentElem e) :

An element x is 𝓛-below an idempotent e if and only if x = x * e.

theorem Semigroup.HPreorder.le_idempotent {S : Type u_1} [Semigroup S] (x e : S) (h : IsIdempotentElem e) :
x â‰Ī𝓗 e ↔ x = e * x ∧ x = x * e

An element is 𝓗-below an idempotent if and only if it is fixed by both left and right multiplication.

theorem Semigroup.HPreorder.le_idempotent' {S : Type u_1} [Semigroup S] (x e : S) (he : IsIdempotentElem e) :
x â‰Ī𝓗 e ↔ e * x * e = x

An element is 𝓗-below an idempotent if and only if it is a sandwich fixed point.

Morphisms #

We prove that all of Green's preorders and equivalences are preserved under morphisms. Note that these should quantify over MulHomClass.

theorem Semigroup.RPreorder.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x â‰Īð“Ą y) :

The ð“Ą-preorder is preserved by semigroup morphisms.

theorem Semigroup.LPreorder.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x â‰Ī𝓛 y) :

The 𝓛-preorder is preserved by semigroup morphisms.

theorem Semigroup.JPreorder.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x â‰Ī𝓙 y) :

The 𝓙-preorder is preserved by semigroup morphisms.

theorem Semigroup.HPreorder.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x â‰Ī𝓗 y) :

The 𝓗-preorder is preserved by semigroup morphisms.

theorem Semigroup.REquiv.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x ð“Ą y) :
f x ð“Ą f y

The ð“Ą equivalence is preserved by semigroup morphisms.

theorem Semigroup.LEquiv.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x 𝓛 y) :
f x 𝓛 f y

The 𝓛 equivalence is preserved by semigroup morphisms.

theorem Semigroup.JEquiv.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x 𝓙 y) :
f x 𝓙 f y

The 𝓙 equivalence is preserved by semigroup morphisms.

theorem Semigroup.HEquiv.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x 𝓗 y) :
f x 𝓗 f y

The 𝓗 equivalence is preserved by semigroup morphisms.

theorem Semigroup.DEquiv.hom_pres {S : Type u_2} {T : Type u_3} [Semigroup S] [Semigroup T] {F : Type u_4} [FunLike F S T] [MulHomClass F S T] (f : F) (x y : S) (h : x 𝓓 y) :
f x 𝓓 f y

The 𝓓 equivalence is preserved by semigroup morphisms.