Documentation

MyProject.Green.Finite

Finite Semigroups and Green's Relations #

This file proves lemmas about Green's relations in finite semigroups.

Main theorems #

All the following lemmas assume S is a finite semigroup.

References #

TODO

Blueprint #

The D-J Theorem for Finite Semigroups #

instance WithOne.finite {S : Type u_1} [Finite S] :

If S is finite, then WithOne S is also finite.

@[simp]
theorem Semigroup.JEquiv.to_dEquiv {S : Type u_1} [Semigroup S] [Finite S] {x y : S} (hj : x 𝓙 y) :
x 𝓓 y

In finite semigroups, 𝓙-equivalence implies 𝓓-equivalence.

theorem Semigroup.dEquiv_iff_jEquiv {S : Type u_1} [Semigroup S] [Finite S] {x y : S} [Finite S] :
x 𝓓 y x 𝓙 y

In finite semigroups, the 𝓓-relation equals the 𝓙-relation.

Properties relating J, L, and R (Proposition 1.4.2 and 1.4.4) #

This section shows how 𝓙-equivalence "strengthens" 𝓡 and 𝓛 preorders to equivalences in finite semigroups.

theorem Semigroup.REquiv.of_jEquiv_mul_right {S : Type u_1} [Semigroup S] [Finite S] {x y : S} (hj : x 𝓙 x * y) :
x 𝓡 x * y

In finite semigroups, 𝓙-equivalence with a right product gives 𝓡-equivalence.

theorem Semigroup.LEquiv.of_jEquiv_mul_left {S : Type u_1} [Semigroup S] [Finite S] {x y : S} (hj : x 𝓙 y * x) :
x 𝓛 y * x

In finite semigroups, 𝓙-equivalence with a left product gives 𝓛-equivalence.

theorem Semigroup.REquiv.of_rPreorder_and_jEquiv {S : Type u_1} [Semigroup S] [Finite S] {x y : S} (hr : x ≤𝓡 y) (hj : x 𝓙 y) :
x 𝓡 y

In finite semigroups, 𝓙-equivalence strengthens the 𝓡-preorder to 𝓡-equivalence.

theorem Semigroup.LEquiv.of_lPreorder_and_jEquiv {S : Type u_1} [Semigroup S] [Finite S] {x y : S} (hl : x ≤𝓛 y) (hj : x 𝓙 y) :
x 𝓛 y

In finite semigroups, 𝓙-equivalence strengthens the 𝓛-preorder to 𝓛-equivalence.

Theorems about 𝓗 #

theorem Semigroup.HEquiv.of_eq_sandwich {S : Type u_1} [Semigroup S] [Finite S] {x u v : S} (h : x = u * x * v) :
x 𝓗 u * x x 𝓗 x * v

In finite semigroups, an element sandwiched between two factors is 𝓗-related to its left and right partial products.