Finite Semigroups and Green's Relations #
This file proves lemmas about Green's relations in finite semigroups.
Main theorems #
All the following lemmas assume S is a finite semigroup.
Semigroup.dEquiv_iff_jEquiv-x 𝓓 y ↔ x 𝓙 y.Semigroup.REquiv.of_rPreorder_and_jEquiv- Ifx 𝓙 yandx ≤𝓡 y, thenx 𝓡 y.Semigroup.LEquiv.of_lPreorder_and_jEquiv- Ifx 𝓙 yandx ≤𝓛 y, thenx 𝓛 y.Semigroup.HEquiv.of_eq_sandwich- Ifx = u * x * v, thenx 𝓗 u * x ∧ x 𝓗 x * v.
References #
TODO
Blueprint #
One LEMMA entry for the DJ theorem Label : d-j-theorem Lean lemmas to tag :
Semigroup.JEquiv.to_dEquivSemigroup.dEquiv_iff_jEquivContent : Prove the J D theorem, explain both directions Dependencies : exists-pow-sandwich
One entry for the lemmas showing how
J"strengthens" preorders Label : j-strengthening Lean lemmas to tag :Semigroup.REquiv.of_rPreorder_and_jEquivSemigroup.LEquiv.of_lPreorder_and_jEquivContent: Prove for R, say L holds by a similar argument Dependencies : exists-pow-sandwich
One entry for
Semigroup.HEquiv.of_eq_sandwichLabel : h-of-sandwich Lean lemmas to tag :Semigroup.HEquiv.of_eq_sandwichContent : Prove it Dependencies : j-strengthening
The D-J Theorem for Finite Semigroups #
Properties relating J, L, and R (Proposition 1.4.2 and 1.4.4) #
This section shows how 𝓙-equivalence "strengthens" 𝓡 and 𝓛 preorders to equivalences in finite semigroups.